Lower bounds for solving linear diophantine equations on random access machines

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Linear Diophantine Equations

An overview of a family of methods for nding the minimal solutions to a single linear Diophantine equation over the natural numbers is given. Most of the formal details were dropped, some illustrations that might give some intuition on the methods being presented instead.

متن کامل

Fast Methods for Solving Linear Diophantine Equations

We present some recent results from our research on methods for finding the minimal solutions to linear Diophantine equations over the naturals. We give an overview of a family of methods we developed and describe two of them, called Slopes algorithm and Rectangles algorithm. From empirical evidence obtained by directly comparing our methods with others, and which is partly presented here, we a...

متن کامل

Miltersen. Lower Bounds for Union-split--nd Related Problems on Random Access Machines. In

10 to instances with fewer don't cares. The hardest case seems to be when queries have exactly d 2 don't cares. In this case npm is extremely rich. Almost all entries in the communication matrix are one. However, perhaps not surprisingly, we have the following: 11 Claim 16. The communication matrix for npm restricted to queries with exactly d 2 don't cares contains a 1-monochromatic rectangle o...

متن کامل

Bounds on Positive Integral Solutions of Linear Diophantine Equations

Assuming the existence of a solution, we find bounds for small solutions x of the finite matrix equation Ax = B, where each entry of A, B is an integer, and x is a nontrivial column vector with nonnegative integer entries. 0. Introduction. In [1], [5] and [6] there arise in a topological setting, systems of linear equations with integer coefficients. The problem is to find a bound K depending o...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 1985

ISSN: 0004-5411,1557-735X

DOI: 10.1145/4221.4250